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A non-shallow non-linear shell theory is used to analyze the parametric resonance of
orthotropic circular cylindrical shells under harmonically varying axial compression. As
special cases, post-buckling and non-linear vibration problems are also studied. In the
analysis the non-linear terms and the inertias contributed by both normal displacement w
and circumferential displacement v are included. Therefore the final dynamic system
includes two equations in w and v. The transverse shear deformation is taken into account
by a first order theory. The spatial variables in the governing equations are eliminated by
the Galerkin procedure. The final ordinary differential equations are solved by an
asymptotic method. Numerical results show the dependence of the post-critical behaviour
on the properties of material, geometry and excitation.
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1. INTRODUCTION

Circular cylindrical shells under axial compression have long been of considerable
interest because of their importance in structural applications. In the static case, when the
compressive load P reaches a critical value Pcr the shell will buckle due to infinitesimal
lateral disturbance, which inevitably exists. In the dynamic case, P is time dependent. If
it is assumed to have the form

P(t)=P0 +Pt cos u(t)

where P0 and Pt are positive constants, then

f=du/dt

is the frequency of the load P. In this case, if P0 +Pt QPcr the shell usually vibrates
longitudinally only. However, when the frequency is equal or close to some special values,
the shell will vibrate laterally if there is any lateral disturbance, even for P0 +Pt�Pcr . This
phenomenon is called parametric resonance.

Buckling studies determine the critical load. Post-buckling studies investigate how the
shell behaves after buckling. Similarly, in the dynamic case, it is necessary to determine
when the parametric resonance will occur and then to obtain the so-called stability
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boundary. The question as to how the shell will vibrate when resonance occurs is analogous
to post-buckling in statics. Hence both post-buckling equilibrium and parametric
resonance can be referred to as post-critical behaviours.

In contrast to isotropic shells, the post-critical behaviours of anisotropic shells have not
been extensively investigated, especially for the dynamic case. Based on Donnell’s shallow
shell theory, Von Kármán’s kinetic relations and a multi-mode model, Iu and Chia [1, 2]
used the Galerkin procedure and the method of harmonic balance to study the non-linear
vibration and, as a special case, the post-buckling equilibrium of unsymmetric cross-ply
cylindrical shells with various boundary conditions and imperfections. Sun [3] analyzed the
buckling and post-buckling behaviour of oval cylindrical shells by using a perturbation
method. Reddy and Savoia [4] and Savoia and Reddy [5] treated laminated circular
cylindrical shells with a layer-wise shell theory and obtained the post-buckling path in
terms of load-shortening curves. Three-dimensional buckling analyses were presented by
Kardomateas [6], Dong and Etitum [7] and Ye and Soldatos [8]. Although post-buckling
is not involved, these three-dimensional studies are useful for checking the results from
shell theories. The finite element method is also a powerful tool for post-buckling analysis
as shown, for example, by Goldmanis and Riekstinsh [9].

For the dynamic case, there has been some recent work on the dynamic stability
(parametric resonance) of cylindrical shells, but it is mostly limited to the calculation of
the stability boundaries, not the resonance behaviour. Bert and Birman [10] used a thick
shell theory to obtain the stability boundaries and to show their dependence on geometry
and material, while Shaw et al. [11] did essentially the same thing for a thin shell theory.
Liao and Cheng [12] studied the same problem using a degenerated shell element and a
curved beam element, together with the infinite determinant and multi-scale methods.
Kovtunov [13] investigated not only the stability boundary but also the resonance
behaviour by using the finite element method for isotropic shells under axial compression,
which changes with time according to the law of periodical trapezium impulse.

The present paper principally studies the post-critical behaviour of axially compressed
cylindrical shells, including parametric resonance and, as its special cases, post-buckling
equilibrium and non-linear vibration. As shown by Kardomateas [6], the non-linear term
in circumferential displacement v has a significant influence on the buckling load.
Therefore, in the present study of the post-critical behaviour, the non-linear terms in v as
well as w are retained in the equations of motion. In addition, inertias associated with v
and w are retained while those related to u, c and f are neglected. As a result, the final
dynamic system involves two unknowns, v and w. The material is assumed to be specially
orthotropic. This mostly means laminates, for which the transverse shear should not be
neglected. The present paper uses a kind of first order theory with a correction factor of
5/6 to account for the transverse shear. As usual, the governing partial differential
equations are reduced to ordinary differential equations with respect to time by the
Galerkin procedure. These ordinary differential equations, for which the non-linearity
involves a third order polynomial in v and w, are solved by an asymptotic method.

2. BASIC EQUATIONS

Using a right-hand axis system, let x, y and z be the co-ordinates in the axial,
circumferential and normal directions, respectively, for any point in the shell wall, with
the origin at one end of the shell. The first order transverse-shear theory assumes the
displacement relationships

u1 = u+ zc, u2 = v+ zf, u3 =w, (1)
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where u1, u2 and u3 are displacements in x, y and z directions, respectively, u, v and w are
the displacements at the middle surface, and c and f are the two rotations of the normal
to the middle surface. For a cylindrical shell subjected to axial compression, it is only
necessary to retain the non-linear terms from the derivatives of v and w in the strain
expressions, and the non-linear terms involving the derivatives of u, c and f can be
neglected. In addition, the usual assumption of small strain is made. Thus

o1 = o0
1 + zk1, o2 = o0

2 + zk2, o6 = o0
6 + zk6,

o4 = o0
4 , o5 = o0

5 , (2)

where

o0
1 =

1u
1x

+ 1
2 $01v

1x1
2

+01w
1x1

2

%, o0
2 =

1v
1y

+
w
R

+ 1
2 01w

1y
−

v
R1

2

,

o0
6 =

1u
1y

+
1v
1x

+
1w
1x 01w

1y
−

v
R1,

k1 =
1c

1x
, k2 =

1f

1y
, k6 =

1c

1y
+

1f

1x
. (3)

Here o1, o2 and o6 are in-plane strains, o4 and o5 are transverse shear strains, the superscript
zero denotes the middle surface values of these strains, and k1, k2 and k6 are the changes
of curvature of the middle surface

From equations (1)–(3), the principle of virtual work gives the equations of equilibrium

1N1

1x
+

1N6

1y
+ f1 =0, (4)

1N6

1x
+

1N2

1y
+

Q2

R
+

1

1x 0N1
1v
1x1+

N2

R 01w
1y

−
v
R1+

N6

R
1w
1x

+ f2 =0, (5)

1Q1

1x
+

1Q2

1y
−

N2

R
+

1

1x 0N1
1w
1x1+

1

1y $N2 01w
1y

−
v
R1%

+
1

1x $N6 01w
1y

−
v
R1%+

1

1y 0N6
1w
1x1+ f3 =0, (6)

1M1

1x
+

1M6

1y
−Q1 +m1 =0,

1M6

1x
+

1M2

1y
−Q2 +m2 =0, (7, 8)

and the natural boundary conditions at x=0 and x=L:

N1 +P(t)=0 or u is given, (9)

N6 =0 or v is given, (10)

Q1 =0 or w is given, (11)

M1 =0 or c is given, (12)

M6 =0 or f is given. (13)
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where R and L are, respectively, the radius and the length of the shell, and (f1, f2, f3) and
(m1, m2) are, respectively, the forces and the moments per unit area of the middle surface.
In addition to equations (9)–(13), the natural boundary conditions also include the
condition that N2, N6, Q2, M2, M6, u, v, w, c and f must be continuous and periodic
functions of y with period 2pR. The quantities Ni , Mi and Qi are stress resultants, defined
by

(Ni , Mi )=g
T/2

−T/2

si (1, z) dz, i=1, 2, 6

Q2 =g
T/2

−T/2

s4 dz, Q1 =g
T/2

−T/2

s5 dz,

where T is the thickness of the shell and the si are the stresses corresponding to the oi

(i=1, 2, . . . , 6).
In the present case, there are no distributed forces and moments except for the inertia

forces. In addition, the inertia forces related to u, c and f are assumed to be negligible
in the present analysis. Thus

f1 =0, m1 =m2 =0, f2 =−mv̈, f3 =−mẅ, (14)

where m is the mass per unit area of the middle surface and the superscript dots denote
the second derivative with respect to time t. Furthermore, in the present problem the load
is axial compression only, and therefore the non-linear terms related to N2 and N6 in
equations (5) and (6) can be omitted. Thus equations (5) and (6) reduce to their final form

1N6

1x
+

1N2

1y
+

Q2

R
+N1

12v
1x2 = mv̈, (15)

1Q1

1x
+

1Q2

1y
−

N2

R
+N1

12w
1x2 = mẅ, (16)

These two equations are the same as those obtained by Timoshenko and Gere [14] for
isotropic shells, except only that the force N1 here is no longer constant, and therefore the
two dynamic equations (15) and (16) are non-linear.

Equation (4) can be satisfied by introducing a stress function F such that

N1 =
12F
1y2 , N6 =

12F
1x 1y

. (17)

The constitutive equations for specially orthotropic materials can be written in the form

8N1

N2

N69= &A11

A12

0

A12

A22

0

0
0

A66'8o
0
1

o0
2

o0
69, 6Q2

Q17=$A44

0
0

A55%6o0
4

o0
57,

8M1

M2

M69= &D11

D12

0

D12

D22

0

0
0

D66'8k1

k2

k69. (18)
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Using equations (18), (3) and (17), the force N2 can be expressed in terms of v, w and F
as

N2 =
1

A*22 $1v
1y

+
w
R

+ 1
2 01v

1y1
2

+ 1
2 01w

1y1
2

−A*12
12F
1y2%, (19)

where the matrix [A*ij ] is the inverse of the matrix [Aij ]. Substituting equations (17) and
(19) into (15) and (16) and making use of equations (18) and (3) gives

1
A*22 $12v

1y2 +
1
R

1w
1y

+
1v
1y

12v
1y2 +

1w
1y

12w
1y2 −A*12

13F
1y3%−

13F
1x2 1y

+
A44

R 01w
1y

+f−
v
R1+

12F
1y2

12v
1x2 = mv̈, (20)

A55 012w
1x2 +

1c

1x1+A44 012w
1y2 +

1f

1y
−

1
R

1v
1y1

−
1

RA*22 $1v
1y

+
w
R

+ 1
2 01v

1y1
2

+ 1
2 01w

1y1
2

−A*12
12F
1y2%+

12F
1y2

12w
1x2 = mẅ. (21)

Equations (7) and (8) can also be expressed in terms of displacements and rotations, by
using the constitutive and kinematic equations, to give

1

1x 0D11
1c

1x
+D12

1f

1y1+
1

1y $D66 01c

1y
+

1f

1x1%=A55 01w
1x

+c1, (22)

1

1x $D66 01c

1y
+

1f

1x1%+
1

1y 0D12
1c

1x
+D22

1f

1y1=A44 01w
1y

+f−
v
R1. (23)

Since the strains are non-linear in the displacements, the compatibility equations for the
stresses are also non-linear and have the form

0A*11 −
A*2

12

A*221 14F
1y4 +A*66

14F
1x2 1y2 +

13v
1x2 1y

+
A*12

A*22 013v
1y3 +

1
R

12w
1y21

+
1v
1y

13v
1x2 1y

+
12v
1x2

12v
1y2 +

1w
1y

13w
1x2 1y

+
12w
1x2

12w
1y2

+
A*12

A*22 $012v
1y21

2

+
1v
1y

13v
1y3 +012w

1y21
2

+
1w
1y

13w
1y3%=0. (24)

To summarize, the five equations (20)–(24) for the five unknowns, v, w, c, f and F are
the basic equations for the present analysis.
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3. REDUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

To solve the basic equations, F is expanded as the series

F= s
N

m,n=1

fmn sin am x cos bn y−P(t)y2 (25)

and the following single-wave modes are used for v, w, c and f:

v=V(t) sin ap x sin bq y, w=W(t) sin ap x cos bq y,

c=C(t) cos ap x cos bq y, f=F(t) sin ap x sin bq y, (26)

where

ai = ip/L, bj = j/R, i=m or p, j= n or q.

Equations (25) and (26) satisfy the simply supported boundary conditions at x=0 and
x=L, namely

N1 =−P(t), v=w=0, M1 =0, f=0 (27)

and have the required continuity and periodicity with respect to y.
Substitution of equations (25) and (26) into equations (20), (21) and (24) yields, after

application of the Galerkin procedure,

mV� +$ b2
q

A*22
+

A44

R2 − a2
p P(t)%V+

bq

R 0 1
A*22

+A44 1W−
A44

R
F

+ s
N

m,n=1

fmn $0a2
m bn + b3

n
A*12

A*221dmp dnq +V
a2

p b2
n

2
hm0 − hm,2p

2
dn,2q %=0, (28)

mW� +
bq

R 0 1
A*22

+A44 1V+$a2
p A55 + b2

q A44 +
1

R2A*22
− a2

p P(t)%W+ ap A55 C− bq A44 F

+ s
N

m,n=1

fmn $b2
n

A*12

RA*22
dmp dnq −W

a2
p b2

n

2
hm0 − hm,2p

2
dn,2q%=0, (29)

Zij fij =Gv
pq V+Gw

pq W+Hv
pq V2 +Hw

pq W2, (30)

where d is the Kronecker delta and

Zij = b4
j 0A*11 −

A*2
12

A*221+ a2
i b2

j A*66

Gv
pq =0a2

p bq + b3
q
A*12

A*221dip djq , Gw
pq =

b2
q

R
A*12

A*22
dip djq ,
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Hv
pq =−Hw

pq =0a2
p b2

q + b4
q
A*12

A*221 hi0 − hi,2p

2
di,2q ,

hij =
2i[1− (−1)i+ j ]

(i2 − j2)p
.

Substitution of equations (25) and (26) into equations (22) and (23) yields

(a2
p D11 + b2

q D66 +A55)C− ap bq (D12 +D66)F=−ap A55 W, (31)

−ap bq (D12 +D66)C+(a2
p D66 + b2

q D22 +A44)F=A44 0VR+ bq W1, (32)

directly, without the Galerkin procedure being used.
Equations (31) and (32) can be solved to give C and F in terms of V and W. The form

of the solution is

C= e11 V+ e12 W, F= e12 V+ e22 W. (33, 34)

From equation (30) fij can be found as

fij =(Gv
pq V+Gw

pq W+Hv
pq V2 +Hw

pq W2)/Zij . (35)

Substitution of equations (33)–(35) into equations (28) and (29) gives two ordinary
differential equations in terms of V and W; i.e.,

mV� +$ b2
q

A*22
+

A44

R2 − a2
p P(t)%V+

bq

R 0 1
A*22

+A44 1W−
A44

R
F

+
1

Zpq
(Gv

pq V+Gw
pq W+Hv

pq V2 +Hw
pq W2)0a2

p bq + b3
q
A*12

A*221
+ s

N

m=1

V
Zm,2q

(Gv
m,2q V+Gw

m,2q W+Hv
m,2q V2 +Hw

m,2q W2)
a2

p b2
2q

2
hm0 − hm,2p

2
=0, (36)

mẄ+
bq

R 0 1
A*22

+A44 1V+$a2
p A55 + b2

q A44 +
1

R2A*22
− a2

p P(t)%W+ ap A55 C− bq A44 F

+
1

Zpq
(Gv

pq V+Gw
pq W+Hv

pq V2 +Hw
pq W2)b2

q
A*12

RA*22

− s
N

m=1

W
Zm,2q

(Gv
m,2q V+Gw

m,2q W+Hv
m,2q V2 +Hw

m,2q W2)
a2

p b2
2q

2
hm0 − hm,2p

2
=0. (37)

4. INITIAL POST-BUCKLING

Post-buckling behaviour can be obtained from equations (36) and (37) as a special case.
Instead of starting directly from equations (36) and (37), the more general non-linear
dynamic system,
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müi + s
N

j=1

[dij u̇j +(aij − a2P(t)dij )uj ]+ s
N

j,k=1

bijk uj uk + s
N

j,k,l=1

cijkl uj uk ul =0,

i=1, 2, . . . , N, (38)

is considered, where ui are the generalized displacements of the system, [aij ] is a symmetric
and postive definite matrix, and dij u̇j is the equivalent viscous damping. The coefficients
m, a, dij , aij , bijk and cijkl are all constant. It is obvious that equations (36) and (37) are a
special case of equation (38) for N=2 and dij =0.

Let the matrix [aij ] have distinct eigenvalues l1 Q l2 Q · · ·Q lN , for which the
normalized eigenvectors are

{x1j , x2j , . . . , xNj}T, j=1, 2, . . . , N.

By introducing a new set of generalized displacements wj such that

ui = s
N

j=1

xij wj , (39)

equations (38) can be transformed into

mẅm +(lm − a2P(t))wm + s
N

n=1 0 s
N

i, j=1

xim xjn dij1ẇn

+ s
N

n,s=1 0 s
N

i, j,k=1

xim xjn xks bijk1wn ws + s
N

n,s,t=1 0 s
N

i, j,k,l=1

xim xjn xks xlt cijkl1wn ws wt =0,

m=1, 2, . . . , N. (40)

(Note that wi is not related to the physical displacement w in the z direction).
Two special cases are now considered:

(1) Linear static equilibrium. In this case equations (40) reduce to the system of
equations of equilibrium

(lm − a2P)wm =0, m=1, 2, . . . , N, (41)

where P is a constant. From equations (41) the buckling load can be obtained as

Pcr = l1 /a2, (42)

from which a dimensionless load P� can be defined as

P�(t)=
P(t)
Pcr

=
P0

Pcr
+

Pt

Pcr
cos u(t)=P�0 +P�t cos u(t). (43)

(2) Linear free vibration. In this case, equations (40) become

mẅm + lm wm =0, m=1, 2, . . . , N, (44)

which give the natural frequencies vm as

v2
m = lm /m, m=1, 2, . . . , N. (45)

By using the lowest frequency v1, a dimensionless time t� can be defined as

t�=v1 t. (46)
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Introducing P�(t), t�and dimensionless displacements vm =wm /T into equations (40) gives

v0m +V2
m vm =P�t cos u(t)vm − s

N

n=1

d�mn v'n − s
N

n,s=1

b�mns vn vs − s
N

n,s,t=1

c̄mnst vn vs vt ,

m=1, 2, . . . , N, (47)

where the prime denotes the derivative with respect to t�, and V2
m , d�mn , b�mns and c̄mnst are the

dimensionless quantities

V2
m =

lm

l1
−P�0, d�mn =

T
l1

s
N

i, j=1

xim xjn dij ,

b�mns =
T2

l1
s
N

i, j,k=1

xim xjn xks bijk , c̄mnst =
T3

l1
s
N

i, j,k,l=1

xim xjn xks xlt cijkl .

(Note that vm is not related to the physical displacement v in the y direction.)
For post-buckling the dynamic terms in equations (47) should be omitted to give

0lm

l1
−P�0 1vm + s

N

n,s=1

b�mns vn vs + s
N

n,s,t=1

c̄mnst vn vs vt =0, m=1, 2, . . . , N. (48)

The method of Rik [15] is now used to study equations (48). Consider a more general case
in which the equilibrium is governed by equations of the form

fm (P�0, v� )=0, m=1, 2, . . . , N, (49)

with the condition

fm,n = fn,m ,

where v� denotes (v1, v2, . . . , vN ), and fm,n = 1fm /1vn . Equations (49) determine the path of
equilibrium in the (N+1)-dimensional space S composed of P�0 and v� . The theorem of
existence of implicit functions states that if

det =fm,n (P�0, v� ) =$0 (50)

at a point in the space S, then equations (49) uniquely determine vn (n=1, 2, . . . , N) as
single-valued functions of P�0 in the neighbourhood of that point. A point at which

det =fm,n (P�0, v� ) ==0 (51)

is called a point of singularity. A point of singularity may be a turning point (limit point),
where the tangent to the equilibrium path is perpendicular to the direction of P�0, or a
bifurcating point, where the path bifurcates and has more than one tangent. The
bifurcation is of the most interest.

For equations (48), the straight line vm =0 (m=1, 2, . . . , N), i.e., the P�0-axis, is
obviously a path of equilibrium, called the fundamental path. The points P�0 = lm /l1

(m=1, 2, . . . , N) on the P�0-axis are bifurcations. The bifurcation corresponding to the
smallest lm /l1 is called the critical point, denoted by (P�c

0, v� c). The solution to the eigenvalue
problem at the critical point is called the buckling mode, denoted by v� *. At each
bifurcation, the path bifurcates into two branches, of which one is the fundamental path
and the other is the post-buckling path. Here the tangent to the post-buckling path at the
critical point, called the initial post-buckling slope, is the quantity required.
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It is obvious from equations (49) that the direction vector (dP�0 /ds, dv� /ds), of a tangent
to the post-buckling path should satisfy

d
ds

fm (P�0, v� )= 1fm

1P�0

dP�0

ds
+ s

N

i=1

fm,i
dvi

ds
, (52)

d2

ds2 fm (P�0, v� )= 12fm

1s1P�0

dP�0

ds
+

1fm

1P�0

d2P�0

ds2 + s
N

i=1 01fm,i

1s
dvi

ds
+ fm,i

d2vi

ds21=0,

m=1, 2, . . . , N, (53)

where s is the length of the post-buckling path. Using equations (51)–(53), Rik [15] gives
the relationship between the tangential vectors to the fundamental path, (dP�0 /ds, dv� /ds)1,
and to the post-buckling path, (dP�0 /ds, dv� /ds)2, at the bifurcation as

(dP�0 /ds)2 = ab(dP�0 /ds)1, (dv� /ds)2 = a(b(dv� /ds)1 + v� *), (54)

where

b=−1
2 0 s

N

i, j,k=1

fi, jk v*i v*j v*k 1>0 s
N

i, j,k=1

fi, jk v*i v*j 0dvk

ds11

+ s
N

i, j=1

1fi, j

1P�0

dP�0

ds
v*i v*j 1,

a=0b2 +2b s
N

i=1

v*i (dvi /ds)1 +11
−0·5

. (55)

For equations (48),

(P�c
0, v� c)= (1, 0, . . . , 0), v� *= (1, 0, . . . , 0), ((dP�0 /ds)1, (dv� /ds)1) = (1, 0, . . . , 0) (56)

and therefore

b=
f1,11

2
= b�111, a=

1

z1+ b2
=

1

z1+ b�2
111

,

0dP�0

ds
,
dv�
ds12

=
1

z1+ b�2
111

(b�111, 1, 0, . . . , 0). (57)

From the last of these equations, it can be concluded that the tangent to the post-buckling
path of the system of equations (48) at the critical point is in the plane of (P�0, v1) and has
slope

1P�0 /1v1 = b�111. (58)

For many structures, bijk =0 for all i, j and k. Then the second order derivatives d2P�0 /ds2

and d2v� /ds2 are needed to describe the initial post-buckling behaviour. These second order
derivatives can be obtained from equations (53) under the condition of normalization,

(dP�0 /ds)2 + s
N

i=1

(dvi /ds)2 =1,
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that can be differentiated to give

dP�0

ds
d2P�0

ds2 + s
N

i=1

dvi

ds
d2vi

ds2 =0. (59)

Equations (53) and (59) are valid at all points on the post-buckling path, including the
critical point at which, due to equation (56) and the condition bijk =0,

0dP�0

ds
,
dv�
ds1=0dP�0

ds
,
dv�
ds12

= (0, 1, 0, . . . , 0). (60)

Substitution of equation (60) into equation (59) yields

d2v1 /ds2 =0. (61)

Then, for m=1, equation (53) gives

d2P�0

ds2 =6c̄1111, (62)

and for the other values of m equations (53) give

d2vi

ds2 =0, i=2, 3, . . . , N. (63)

By making use of equations (60) and (61) and the definition of v� beneath equations (49),
it can be shown that

d2P�0

ds2 =
12P�0

1v2
1
.

Hence equation (62) yields

12P�0

1v2
1

=6c̄1111. (64)

Equations (58) and (64) completely describe the initial post-buckling behaviour of the
system of equations (48).

5. PARAMETRIC RESONANCE

The asymptotic method of Evan-Iwanowski [16] is now used to solve the dynamic system
of equations (47) for parametric resonance. The detailed derivation of reference [16] is not
repeated here. Instead, the relevant results are cited without much derivation.

Let Fm (u, v� , v� ') denote the right sides of equations (47). Consider the following
equations, in which o is a small parameter:

v0m +V2
m vm = oFm (u, v� , v� '), m=1, 2, . . . , N. (65)

Once equations (65) are solved, setting o=1 gives the solution to equations (47). The
asymptotic method seeks a solution to equations (65) with the form, for m=1, 2, . . . , N.

vm = am (t) cos cm (t)+ s
M

i=1

oiUmi (u, a� , c), (66)�



.   . . 318

a'm (t)= s
M

i=1

oiAmi (u, a� , c� ), (67)

c'm (t)=Vm + s
M

i=1

oiBmi (u, a� , C� ), (68)

where t= ot� is called slow time and a� and c� denote (a1, a2 · · · , aN ) and (c1, c2 · · · , cN ),
respectively. u, a� and c� are all functions of time t or t�, which is omitted on many occasions
for simplicity of presentation. The functions Umi , Ami and Bmi can be determined by
substituting equations (66)–(68) into (65), equating similar terms at the two sides of each
equation and eliminating secular terms. In the following attention is confined to the case
of M=1, to obtain a first order asymptotic solution.

For the first order asymptotic solution of equations (47), vm = am cos cm is substituted
into their right sides and the square and cubic terms are expanded to obtain

v0m +V2
m vm =

P�t

2
am [cos (u+cm )+ cos (u−cm )+ s

N

n=1

d�mn an Vn sin cn

− 1
2 s

N

n,s=1

b�mns an as [cos (cn +cs )+ cos (cn −cs )]

− 1
4 s

N

n,s,t=1

c̄mnst an as at [cos (cn +cs +ct )+ cos (cn +cs −ct )

+ cos (cn −cs +ct )+ cos (cn −cs −ct )],

m=1, 2, . . . , N. (69)

Then, the coefficients Am1, Bm1 and Um1 needed by the first order solution to equations
(66)–(68) can be obtained from the coefficients of equation (69) by using the formulas given
by Evan-Iwanowski [16]. This involves two different cases, which are dealt with separately
in the next two subsections.

5.1. - 

For simplicity of presentation, the first equation (with m=1) of (47) is taken as a
sample. By using equations (2.23) and (2.24) of reference [16] for equation (69), it is found
that

A11 =−1
2 d�11 (70)

B11 =
3a2

1

8V1
c̄1111 +

1
4V1

[(c̄1122 + c̄1221 + c̄1212)a2
2 + (c̄1133 + c̄1331 + c̄1313)a2

3

+ · · ·+ (c̄11NN + c̄1NN1 + c̄1N1N )a2
N ], (71)

U11 = 1
2 P�t a1 $cos (u+c1)

f�( f�+2V1)
+

cos (u−c1)
f�( f�−2V1) %+ s

j

d�1j
Vj aj sin cj

V2
1 −V2

j

− 1
2 s

j,k

b�1jk aj ak $ cos (cj +ck )
V2

1 − (Vj +Vk )2 +
cos (cj −ck)

V2
1 − (Vj −Vk )2%



-     319

− 1
4 s

j,k,l

c̄1jkl aj ak al $ cos (cj +ck +cl )
V2

1 − (Vj +Vk +Vl )2 +
cos (cj +ck −cl )

V2
1 − (Vj +Vk −Vl )2

+
cos (cj −ck +cl )

V2
1 − (Vj −Vk +Vl )2 +

cos (cj −ck −cl )
V2

1 − (Vj −Vk −Vl )2%, (72)

where f�=du/dt�= f/v1 is the dimensionless frequency of the excitation, and the subscripts
j, k and l in the summations cover 1 through N, except that those which may cause a
denominator to be identical to zero are omitted. Substitution of equations (70) and (71)
into (67) and (68) with m=1 and o=1 yields

a'1 =−1
2 d�11 a1, c'1 =V1 +B11. (73, 74)

Equation (73) can be solved independently to give

a1 = a10 exp (−1
2 d�11 t�), (75)

where a10 is a constant determined by the initial conditions. Equation (74) is coupled with
the vibrations of other generalized displacements, and can be solved together with its
counterparts for v2, v3, . . . , vN without any difficulty.

As proved by Evan-Iwanowski [16], in the non-resonance case, U11 in equation (66) is
negligible compared with a1 cos c1. After U11 is omitted, the first order solution becomes

v1 = a10 exp (−1
2 d�11 t�) cos c1 (76)

which is called the zeroth order solution. The exciting force P�t does not appear in equation
(76) because it contributes only to the small term U11. Therefore, equation (76) is also a
zeroth order solution for the non-linear free vibration of a cylindrical shell subjected to
constant axial compression, and equation (74) represents its non-linear frequency. From
equations (74) and (71) it can be seen that the non-linear vibrations of the different
generalized displacements vm of system (47) are coupled with each other through their
non-linear frequencies.

Now suppose that only v1 vibrates in the free vibration. This can be achieved, for
example, by setting the initial conditions such that

a10 $ 0, am0 =0 for m=2, 3, . . . , N.

For such a mode, equations (74) and (71) reduce to the simple equation for non-linear
frequency

c'1
V1

=1+ 3
8 c̄1111

a2
1

V2
1
, (77)

which is similar to that given by Atluri [17].

5.2.  

For some structures and loads, some of the denominators in equation (72) may be equal
or close to zero. Then U11 is no longer negligible and may become infinite, so that resonance
occurs. For example, when f�=2V1, the second denominator in equation (72) becomes
zero, and the resulting resonance is called the main resonance and is a most important one.
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For resonance, the above solution procedure breaks down, and a different procedure is
given by equations (2.28) of reference [16] as

v1 = a1 cos c1

a'1 =A11 +
P�t a1

2f� sin (u−2c1), c'1 =B11 −
P�t

2f� cos (u−2c1).

Usually c1 is replaced by a new variable f1 such that

c1 =
u

2
+f1,

so that the above equations become

v1 = a1 cos 0u2+f1 1, (78)

a'1 =A11 −
P�t a1

2f� sin 2f1, f'1 =V1 −
f�
2

+B11 −
P�t

2f� cos 2f1. (79, 80)

In the following, discussion is confined to the stationary case, for which

f�=constant, a'1 =0, f'1 =0. (81)

Substituting equations (81) into (79) and (80), and using equations (70) and (71) with
a2, a3, . . . , aN having died out, gives a1 as a function of f� and other parameters, i.e.,

a1 =$ 8V1

3c̄1111 0 f�
2

−V1 2 1
2 0P�2

t

f�2 − d�11 1
1/2

%
1/2

, (82)

which is an important description of the behaviour of the main resonance.
Inspection of equation (82) shows that, for given V1, P�t and d�11, there are certain

frequencies f�1, f�2 and f�3 on the f�-axis such that one of (A), (B) and (C) below occurs.
(A) For f�E f�1 or f�e f�3, a1 is zero or imaginary, so that resonance does not occur and

the system is stable; i.e., any disturbance to the system will die out exponentially.
(B) For f�1 Q f�E f�2, a1 has one non-zero real root, so that resonance occurs and the

system is unstable; i.e., any disturbance of the system will develop into a periodic vibration
with amplitude equal to a1.

(C) For f�2 Q f�Q f�3, a1 has two non-zero real roots, and calculation shows that the system
is unstable for large disturbances; i.e., a large disturbance will develop into a periodic
vibration with its amplitude given by the larger root, whereas small disturbances will die
out exponentially. Therefore this case is called conditionally stable.

It can be concluded that f�1, f�2 and f�3 represent the boundaries between stability and
instability and are of great interest. In the next section, these boundaries are considered
in more detail by examining examples.

In subsections 5.1 and 5.2 we have considered only the vibration of v1. Similar results
can be obtained for the vibrations of v2, v3, . . . , vN .
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6. NUMERICAL RESULTS

6.1. -

To check the analysis and the numerical procedures developed in the previous sections,
buckling loads were calculated for an example given in reference [6] which consists of a
cylinder with length L, outer radius R2, inner radius R1 and L/R2 =5. The material is
orthotropic with moduli (in GPa) of E22 =57, E11 =E33 =14, G31 =5·0 and
G12 =G23 =5·7, and with Poisson ratios v23 =0·277 and v31 =0·4. The normalized buckling
load used in reference [6] is

P
 =
Qcr

p(R2
2 −R2

1 )
R2

E33 T
,

where T=R2 −R1 and Qcr is the buckling load. The two smallest [6] values of R2 /R1 have
been selected for comparison. The first of these is R2 /R1 =1·05, for which P
 p =0·6920,
P
 e =0·6764, P
 D =0·7904, (p, q)p =(1, 2), (p, q)e =(1, 2) and (p, q)D =(9, 4). The second
one is R2 /R1 =1·10, for which P
 p =0·6602, P
 e =0·6641, P
 D =0·7883, (p, q)p =(2, 2),
(p, q)e =(2, 2) and (p, q)D =(6, 3). Here the subscripts p, e and D denote the present
theory, elasticity theory and Donnell’s shallow shell theory, respectively, with the results
for the last two theories being taken from reference [6]. p and q are the wavenumbers along
the length and round the circumference of the cylinder, respectively. The comparisons help
to check the correctness of the present theory and numerical procedures, and also show
that the non-shallow shell theory gives better accuracy than the shallow shell theory.

Another check is with the results of Mao and Ling [18] for a laminated cylindrical shell,
with R=0·075 m, T=5×0·0015 m and L=1·0 m. Each ply is a carbon-fibre/epoxy–
resin composite with ply properties E11 =168·0 GPA, E22 =14·0 GPa, G12 =8·4 GPa,
v12 =0·3 and v23 =0·4.

Mao and Ling [18] used a thin-walled beam theory to obtain buckling loads of Pcr

=167 kN/cm for a (0°/0°/0°/0°/0°) laminate and Pcr =107 kN/cm for a (0°/90°/0°/90°/0°)
laminate. Because the present non-shallow shell theory is very good for calculating
buckling of a long cylindrical shell as a thin-walled beam, it gave the same results as above
to within the three-digit accuracy shown. In fact, since the shell theory is more accurate
than the thin-walled beam theory of Mao and Ling [18], the above comparison can be
considered as a check of the correctness and accuracy of their theory. In addition, the
calculation also found those shell-type buckling loads that are lower than the beam-type
buckling loads listed above; i.e., for this shell–beam, shell-type buckling occurs earlier than
beam-type buckling.

The present theory is now used to study post-buckling behaviour. Unsurprisingly, the
b�mns become zero, so that c̄1111 and c̄2222 govern the post-buckling behaviour. Furthermore,
since l1 Q l2, the coefficient c̄1111 is then the parameter governing post-buckling.

Figure 1 is for the cylindrical shell defined in its caption, for which E11 /E22 is varied,
and dimensionless plots of P*cr versus E11 /E22, and of the scattered results for c̄1111, are
shown. Each star denotes the value of the dimensionless post-buckling parameter c̄1111

corresponding to the buckling load denoted by the dot on the curve which has the same
abscissa as the star. The wavenumbers of the buckling mode are in parentheses. To avoid
congestion, when successive stars share the same wavenumbers only the first and last ones
include parenthesized wavenumbers. The results show some abrupt jumps of c̄1111 where
p changes, and also it can be seen that c̄1111 can become negative as E11 /E22 is reduced
towards unity; i.e., when the material becomes less anisotropic.

Figure 2 is for the isotropic cylindrical shell defined in its caption, and it can be seen
that the parameter c̄1111 is negative and jumps whenever p changes. The buckling mode is
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Figure 1. The dimensionless buckling load and post-buckling parameter for different values of E11 /E22 of a
cylindrical shell with R/T=50, L/R=5, n12 = n23 =0·3 and G12 /E22 =0·385. The curve is for P*cr =Pcr R/E22 T2

and the stars are for c̄1111. The numbers in parentheses are the wavenumbers p and q.

composed of V and W components, and calculation shows that the ratios of their absolute
values, i.e., =V =/=W =, lies in the range between 0·255 and 0·340. This means that even
though the W components dominates, the V component is not negligible. A mode for
which the W component dominates is called a W mode, and otherwise the mode is called
a V mode. The buckling mode of an axially compressed cylindrical shell is always a W
mode, except that in the limit it buckles as a column with =V =/=W ==1.

Figure 3 is for the (0°/90°/0°/90°/0°) laminated shell defined in its caption. The curve
shows that the buckling load is almost invariant as L/R changes. Closer inspection shows
that the circumferential wavenumbers are the same for all the calculated buckling loads
and that the longitudinal wavenumber increases progressively as L/R increases, such that
the longitudinal wavelength is almost unchanged. In other words, all the buckling loads
shown by the curve have almost the same wave size. This explains why the buckling load
does not vary significantly along the curve. However, if the shell is very long, column-type

Figure 2. The dimensionless buckling load and post-buckling parameter for an isotropic shell with R/T=50
and n=0·3. The curve is for P*cr =Pcr R/E22 T2 and the stars are for c̄1111. The numbers in parentheses are the
wavenumbers p and q.
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Figure 3. The dimensionless buckling load and post-buckling parameter for different values of L/R for a
cylindrical shell with R/T=50, n12 =0·28, n23 =0·39, E11 /E22 =15 and G12 /E22 =0·57. The curve is for
P*cr =Pcr R/E22 T2 and the stars are for c̄1111. The numbers in parentheses are the wavenumbers p and q.

buckling will become critical. For example, for a shell with L/R=24, a column-type
buckling mode was obtained with (p, q)= (1, 1), =V =/=W ==1 and c̄1111 =−0·104×10−10,
although these results are not shown in Figure 3. The almost zero value of c̄1111 confirms
the usual conclusion of the classical theory of stability; namely, that the initial
post-buckling equilibrium of a compressed column is neutral.

Figures 1–3 lead to the conclusion that the initial post-buckling behaviour of specially
orthotropic cylindrical shells may be very different from that of isotropic ones, because
the initial post-buckling equilibrium of an orthotropic shell may be stable, while that of
isotropic ones is always unstable.

6.2. - 

The non-linear frequencies are no longer constant but are functions of amplitude, and
they are of great interest in the theory of non-linear vibration. Two numerical examples
are now used to examine this phenomenon.

The first example is the isotropic cylindrical shell defined in the caption of Figure 4. As
before, the vibration of v1 is considered as a sample. The wavenumbers p and q were chosen
such that the lowest (fundamental) frequency v1 is achieved. The values were found to be

Figure 4. The dimensionless nonlinear fundamental frequency F1 of an isotropic shell with R/T=50, L/R=5
and n=0·3.
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Figure 5. The dimensionless non-linear fundamental frequency F1 (for which p=1 and q=9) of an
orthotropic shell with R/T=100, L/R=0·5, E11 /E22 =3, G12 /E22 =0·5 and n12 = n23 =0·25.

p=1 and q=3. To avoid confusion, the meanings of some symbols involved in the
following discussion are first explained in the next two paragraphs.

The frequency c'1 in equation (74) can be written as

c'1 =
dc1

dt� =
dc1

dt
dt
dt̄

=
1
v1

dc1

dt
.

Since dc1 /dt is the real physical non-linear frequency, c'1 is a dimensionless form of the
non-linear frequency, which is denoted by F1 below; i.e., F1 =c'1 .

The frequency V1 is the linear fundamental frequency of any system described by
equations (47). For the present case V2

1 =1−P�0, where P�0 =P0 /Pcr . For free vibration,
P�0 =0 and so V1 =1.

In Figure 4 is shown the dependence of F1 on a1, and it can be seen that the non-linearity
causes a weak softening effect. This result is due to the negative c̄1111 shown in Figure 2,
which is in accordance with the well known fact that axially compressed isotropic
cylindrical shells are imperfection sensitive. However, Atluri [17] obtained a strong
hardening effect. This discrepancy is partly due to the constraint on u in the boundary
conditions used by Atluri [17], but the inclusion of the non-linearity and inertia of v in
the present theory is also a cause of the discrepancy.

The second example is the specially orthotropic cylindrical shell defined in the caption
of Figure 5. The F1 versus a1 curve in Figure 5 shows the hardening effect of the
non-linearity for the shell studied, which is due to c̄1111 being positive. (In contrast to
isotropic shells, an orthotropic shell may have positive c̄1111. This result can also be found
in the literature; see e.g., Sun [3]).

6.3.  

The first example is the (0°/90°/0°/90°/0°) laminated cylindrical shell defined in the
caption of Figure 6, which gives the amplitude–frequency plot of the shell. The
intersections of the upper curve and the lower curve with the f�-axis at f�1 and f�2, respectively,
and the abscissa of the intersection of the two curves is f�3. The meanings of f�1, f�2 and f�3

were defined at the end of section 5 above. As shown by Lu et al. [19], when f� is in the
interval of conditional stability ( f�2, f�3), only disturbances with magnitude so large as to
be close to the lower curve can cause resonance, which occurs with amplitude defined by
the upper curve. Therefore, the interval ( f�1, f�2), is more important and is called the interval
of instability or the interval of resonance.
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Figure 6. The stationary parametric main resonance (for which p=1 and q=3) of a laminated cylindrical
shell with R/T=50, L/R=5, E11 /E22 =15, G12 /E22 =0·57 n12 =0·28, n23 =0·39, P�0 =0·2, P�t =0·1 and
d�11 =0·05 (critical damping (d�11)cr =0·0559).

From equation (82), it can be seen that the amplitude of resonance depends on the
parameter of non-linearity, c̄1111. Strong non-linearity, i.e., large c̄1111, can suppress the
amplitude of resonance. The length of the interval ( f�1, f�2) depends on the excitation P�t and
on the damping d�11. This dependence is shown in Figure 7, on which the stability
boundaries are the curves AB and BC and the straight line BD. They are loci of f�1, f�2 and
f�3, respectively, as P�t varies. Therefore, the region between BA and BC is the instability
region, the region between BC and BD is the region of conditional stability and the system
is stable elsewhere. The point B represents a ‘‘threshold’’ for resonance determined by the
damping. The line BD' is not needed yet.

The resonance behaviour of the shell studied as the first example of section 6.2 is, as
shown in Figure 8, quite different from that of Figure 6 above. In Figure 8, there is no
positive f�3. The intervals f�Q f�1, f�1 Q f�Q f�2 and f�q f�2 are conditionally stable, unstable and
stable, respectively. A figure similar to Figure 7 could be drawn for this problem. However,
there is no need to do so because it is almost identical to Figure 7, as follows. The loci
of f�1 and f�2 are identically the same curves as AB and BC in Figure 7, since these curves
do not depend on c̄1111. However, the line BD is now replaced by the line BD' which starts
from the point B and goes down through the point (0·09443, 0) for isotropic shells. Hence
the region between BC and BA is in the instability region, the region between BA and BD'
is the region of conditional stability and the system is stable elsewhere.

Figure 7. Stability boundaries for the parametric main resonance of the laminated shell defined in the caption
of Figure 6 when P�t is varied from the value of 0·1 used in Figure 6.
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Figure 8. The stationary parametric main resonance (for which p=1 and q=3) of an isotropic shell with
R/T=50, L/R=5, n=0·3, P�0 =0·2, P�t =0·1 and d�11 =0·05 (critical damping (d�11)cr =0·0559).

7. CONCLUDING REMARKS

A non-linear theory for post-critical behaviour of orthotropic cylindrical shells under
harmonically varying axial compression is presented in this paper. With this theory, the
parametric resonance is analyzed plus, as special cases, the non-linear vibration, buckling
and post-buckling behaviours. The theory is based on a non-shallow shell theory.
Moreover, the non-linearities and the inertias from both the normal displacement w and
the circumferential displacement v are included. Therefore, as numerical examples show,
not only does the theory give better results than do theories based on Donnell’s shallow
shell theory, but also it can be used for the analysis of long shells which buckle as columns.
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